RAS BiologyРадиационная биология. Радиоэкология Radiation biology. Radioecology

  • ISSN (Print) 0869-8031
  • ISSN (Online) 3034-5898

Morphological Changes in the Vaculous Plexus of the Lateral Ventriles of the Brain of Rats after Prolonged Exposure to Low-Intense γ-Radiation

PII
S30345898S0869803125020077-1
DOI
10.7868/S3034589825020077
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 2
Pages
201-207
Abstract
Experiments to study the morphological features of the choroid plexus of the ventricles of the brain were performed on Wistar rats of reproductive age, which were divided into 3 groups of 7 animals: 1 – control and 2 and 3 – chronic irradiation (absorbed doses – 5 and 50 cGy). Irradiation was carried out using a Foton-1 installation from a Cs source. The experiments were carried out on anesthetized animals. For analysis, histological preparations of serial sections of the lateral ventricles of the brain were used. To assess the volume of the lateral ventricles, sections were selected where the cross-sectional area was maximum. The following morphofunctional rearrangements were recorded: a decrease in the relative volume of the choroid plexuses, as well as the fraction of cells in the plexuses, a decrease in the height of epithelial cells, swelling of cells, erasure of their contours, vacuolization of the cytoplasm. An increase in the volume fraction of blood vessels and a relatively tight fit of individual loops of blood vessels with each other with phenomena of disorganization were observed. Areas of dystrophic changes not only in the choroid plexus, but also in the brain substance have been recorded. The conducted studies indicate that chronic γ-radiation affects the morphological characteristics of the choroid plexus of the ventricles of the brain and expands the understanding of the effect of low-intensity ionizing radiation on the brain, which can be a potential risk factor leading to plexus dysfunction and disruption of liquor dynamics and blood supply.
Keywords
головной мозг крысы сосудистое сплетение низкоинтенсивное γ-излучение ликвор гематоликворный барьер
Date of publication
29.12.2025
Year of publication
2025
Number of purchasers
0
Views
57

References

  1. 1. Гасанова И.Х. Морфофункциональные особенности сосудистых сплетений желудочков головного мозга. _Укр. морфол. альманах._ 2011;(3). @@ Gasanova I.H. Morpho-functional features of the vascular plexuses of the ventricles of the brain. _Ukrainian Morphological Almanac._ 2011;(3). (In Russ.)
  2. 2. Добровольский Г.Ф. Функциональная морфология системы ликворообращения. М.: Компания Спутник+, 2006. 116с. @@ Dobrovolsky G.F. Functional morphology of the liquor circulation system. M.: Sputnik+ Company, 2006. 116 р. (In Russ.)
  3. 3. Коржевский Д.Э. Структурные основы становления гемато-ликворного барьера у человека. Успехи _физиол. наук._ 2002;33(4):43–52. @@ Korzhevskiy D.E. Strukturnye osnovy stanovleniya gemato-likvornogo barrera u cheloveka. _Uspekhi fiziol. nauk._ 2002;33(4): 43–52. (In Russ.)
  4. 4. Redzic Z.B., Redzic Z.B., Preston et al. The choroid plexuserebrospinal fluid system: from development to aging. Curr. Top. Development. Biol. 2005;71: 1–52. https://doi.org/ 10.1016/S0070-2153(05)71001-2
  5. 5. Fame R.M., Cortés-Campos C., Sive H.L. Brain ventricular system and cerebrospinal fluid development and function: Light at the end of the tube: A primer with latest insights. Bioessays. 2020;42. https://doi.org/ 10.1002/bies.201900186
  6. 6. Автандилов Г.Г. Сосудистые сплетения головного мозга. Нальчик: Кабардино-Балкарское книжное изд-во, 1962. @@ Avtandilov G.G. Vascular plexuses of the brain. Nalchik: Kabardino-Balkarian Book Publishing House, 1962 (In Russ.)
  7. 7. Kim C.S., Kim J.M. et al. Low-dose of ionizing radiation enhances cell proliferation via transient ERK1/2 and p38 activation in normal human lung fibroblasts. Radiat. Res. 2007;48:407–415. https://doi.org/10.1269/jrr.07032
  8. 8. Воробьев Е.И., Степанов Р.П. Ионизирующее излучение и кровеносные сосуды. М.: Энергоиздат, 1985. 269 с. @@ Vorobyev E.I., Stepanov R.P. Ionizing radiation and blood vessels. M.: Energoizdat, 1985. 269 р. (In Russ.)
  9. 9. Silasi G., Diaz-Heijtz R., Besplug J. et al. Selective brain responses to acute and chronic low-dose X-ray irradiation in males and females. Biochem. Biophys. Res. Comm. 2004;325:1223–1235.
  10. 10. Kaliyanov A.A., Konkova M.S., Kameneva L.V. et al. Small doses of radiation activate a signaling pathway aimed at apoptosis inhibition in mesenchymal stem cells. Seehenov Medical Journal. 2019;10(3): 4–12 (In Russ.). https://doi.org/10.47093/22187332.2019.3.4–12
  11. 11. Kimeldorf D.J., Hunt E.L. Ionizing radiation : neural function and behavior. New York (NY): Academic Press, 1965. 331 р.
  12. 12. Mickley G.A. Psychological effects of nuclear warfare. In: Military Radiobiology. Eds. J. Conklin and R. Walker). NY: Academic Press, 1987. P. 303–319.
  13. 13. Ермакова О.В., Павлов А.В., Есев Л.И. Кораблева Т.В. Двигательная активность цилиарного аппарата ресниччатого эпителия тракет и маточных труб при воздействии хронического низкоинтенсивного γ-излучения. Морфология (архив анатомии, гипнозами и эмбриологии). 2014;146(6): 77–79. @@ Ermakova O.V., Pavlov A.V., Esev L.I., Korableva T.V. Dvigatelnaya aktivnost tsiliarnogo apparata trakhei i matochnykh trub pri vozdeystvii khronicheskogo nizkointensivnogo u – izlucheniya. Morfologiya. 2014;146(6):77–79. (In Russ.)
  14. 14. Павлов А.В., Ермакова О.В., Кораблева Т.В., Фоканова О.А. Функциональная морфология эпителия маточных труб крыс при воздействии хронического низкоинтенсивного γ-излучения. Журн. анатомии и гипнозами. 2022;11(4): 27–32. @@ Pavlov A.V., Ermakova O.V., Korableva T.V., Fokanova O.A. Morphology of the epithelium of the fallopiant tubes of rats under the influence of chronic low-intensity γ-radiation Journal of Anatomy and Histopathology. 2022. 2022;11(4):27–32. (In Russ.). https://doi.org/10.18499/2225-7357-2022-11-4-27-32
  15. 15. Dr. Helen B. Stone, Norman Coleman C., Mitchell S. Anscher, William H. McBride Effects of radiation on normal tissue: consequences and mechanisms. The LANCET. Oncology. 2003;4:529–536. https://doi.org/10.1016/s1470-2045 (03)01191-4
  16. 16. Павлов А.В., Фоканова О.А., Ермакова О.В., Кораблева Т.В. Двигательная активность цилиарного аппарата зленилы желудочков головного мозга крыс в условиях хронического низкоинтенсивного гамма-облучения. Современные проблемы нейробиологии: Мат. IV междунар. Науч. конф. Ярославль: Аверс плюс, 2023. С. 79–80 с. @@ Pavlov A.V., Fokanova O.A., Ermakova O.V., Korableva T.V. Dvigatelnaya aktivnost tsiliarnogo apparata c pendimry zheludochkov golovnogo mozga krys v usloviyakh khronicheskogo nizkointensivnogo gamma-oblucheniya. Sovremennye problemy nevyobiologi: Materialy IV mezhdunarodnov nauchnov konferentsii. Yaroslavl: Avers plyus, 2023. S. 79–80 (In Russ.)
  17. 17. Wong C.S., Vander Kogel A.J. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol. Interv. 2004;4:273–284. https://doi.org/10.1124/mi.4.5.7
  18. 18. Gourmelon P., Marquette C., Agay D. et al. Involvement of the central nervous system in radiation-induced multi-organ dysfunction and/or failure. Br. J. Radiol. 2005;27:62–68.
  19. 19. Lestaceel P., Grandcolas L., Paquet F. et al. Neuroinflammatory response in rats chronically exposed to \(^{137}\)Cesium. Neurotoxicol. 2008;29(2):343–348.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library