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Холодная плазма и обработанные ею растворы активно используются в разных областях медици-
ны. Биомедицинские эффекты холодной плазмы в первую очередь связаны с генерацией активных 
форм кислорода и азота. Источник холодной плазмы “САРКО” (ИОФ РАН) генерирует пероксид 
водорода, оксид азота (II), нитрит-ионы и нитрат-ионы в водном растворе. Использование низ-
котемпературной плазмы газового наносекундного разряда в потоке аргона уменьшает генерацию 
пероксида водорода по сравнению с атмосферной плазмой (разряд зажигается в воздухе без про-
тока газа) и ликвидирует образование производных азота. Количество продуктов окислительных 
реакций, инициируемых аргоновой плазмой, на 30% меньше, чем у атмосферной плазмы. Реко-
мендуется использовать прямой пьезоразряд в воздухе для получения активированных растворов, 
используемых в медицине.
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Плазменный разряд, нагревающий окружаю-
щий газ до температуры не более 40°С, активно 
используется в медицине и называется “холод-
ной плазмой”. В настоящее время все больший 
интерес ученых вызывают реакции клеток 
и тканей, обусловленные воздействием холодной 
плазмы. Механизм такого воздействия связыва-
ют с образованием активных форм кислорода 
и азота (АФКА) из воздуха под действием элек-
трического разряда [1, 2]. Обработка холодной 
плазмой биологических объектов может вызы-
вать такие эффекты, как ускорение регенерации 
[3, 4], уменьшение объема опухоли [5, 6], уничто-
жение биопленок [7] и многие другие.

В исследованиях по плазменной медицине 
для прямого контакта с клеточной культурой 
или биотканью используются два основных типа 
источников холодной плазмы – диэлектриче-
ские барьерные разряды (ДБР) и неравновесные 
плазменные струи атмосферного давления в про-
токе газа (в основном высокочастотные) [8]. При 

непрямом воздействии для генерации долгожи-
вущих активных форм кислорода и азота в жид-
кости, когда не существует строгого условия по 
температуре нагрева объекта воздействия, также 
используются искровые, коронные разряды и т.д. 
В этом случае разряд возникает между концом 
электрода и водной поверхностью. Большинство 
разработанных на данный момент приборов ге-
нерируют холодную плазму в протоке газа (ар-
гон, гелий) [9]. Это связано с тем, что разряд в хо-
лодном газе более стабилен и меньше нагревает 
обрабатываемую поверхность. В результате среда 
инертного газа и снижение температуры влияют 
на химические процессы, вызываемые плазмой.

Многочисленные исследования, проведен-
ные как в России, так и за рубежом, показывают, 
что наиболее стабильными соединениями, об-
разующимися под действием холодной плазмы, 
являются нитрит-ионы, нитрат-ионы и пероксид 
водорода [10–14]. Эти соединения появляются 
в результате активации холодной плазмой моле-
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кул азота и кислорода, находящихся в воздушной 
среде, а также молекул воды. В результате этих 
взаимодействий нейтральные молекулы кис-
лорода и азота могут распадаться на радикалы, 
которые взаимодействуют между собой. К про-
межуточным короткоживущим продуктам отно-
сятся ONOO–, NO∙, O2

–∙, OH∙, OOH∙ и некоторые 
другие [11, 15–17]. 

Существует несколько предположений того, 
какие химические реакции приводят к образо-
ванию долгоживущих активных форм кислорода 
в растворе, обрабатываемом холодной плазмой. 
Ниже представлены основные из них (1–4) [18, 
19].

	 O2 + e– → ●O2
–,� (1)

	 O2
– + H+ → HO2●,� (2)

	 HO2● + HO2● → H2O2 + O2,� (3)

	 N2 + O2 → 2NO●.� (4)

Различные источники холодной плазмы сей-
час внедряются в медицину, поэтому актуаль-
ность данной работы состоит в том, чтобы найти 
источник с оптимальными режимами, подходя-
щими для определенных целей. В предлагаемой 
работе впервые произведено сравнение измене-
ния состава водных растворов после их обработ-

ки источником холодной плазмы с пьезоэлемен-
том в разных газовых средах.

МАТЕРИАЛЫ И МЕТОДЫ

Реактивы: спиновая ловушка POBN [α-(4- 
Пиридил-1-оксид)-Н-трет-бутилнитрон] (Sigma- 
Aldrich), сульфат железа, этанол, пероксид водо-
рода, цитохром С, гидрофосфат калия, дигидро-
фосфат калия, супероксиддисмутаза, тиосуль-
фит, каталаза.

Обработку воды холодной плазмой проводи-
ли с помощью источника на основе пьезотранс-
форматора “CAPKO”, разработанного в ИОФ 
им. А. М. Прохорова РАН [20–22]. Схема уста-
новки представлена на рис. 1. Источник спосо-
бен генерировать как наносекундный искровой 
разряд в воздухе [17, 23], так называемый прямой 
пьезоразряд [24], так и разряд в протоке аргона. 
Обработку воды или 0.9%-ного раствора NaCl 
в объеме 5 мл производили в чашке Петри диа-
метром 5 см прямым пьезоразрядом в атмосфере 
воздуха и в таком же объеме в пластиковой кол-
бе диметром 3 см разрядом с плазмообразующим 
газом в виде аргона. При обработке прямым пье-
зоразрядом использовали вентилятор, обеспе-
чивающий постоянный приток свежего воздуха 
в область взаимодействия плазмы с раствором. 
Аргоновая атмосфера в колбе создавалась за счет 
плотного заклеивания входного отверстия пара-
фином с отверстием диаметром 1 мм для выхода 
газа и барботирования воды аргоном перед обра-
боткой плазмой в течение 5 мин.

2.5−7.5 мин 2.5−7.5 мин(А) (Б)

Плазменная струяПьезо-
трансформатор

Пьезоразряд
Крышка с отверстием

Пластиковый 
корпус Пластиковый корпус

Рис. 1. Схема эксперимента. А – источник прямого пьезоразряда в атмосфере, Б – источник плазменного разряда  
в струе аргона.
Fig. 1. Schematic of the experiment. A – source of direct piezoo discharge in the atmosphere, B – source of plasma discharge  
in argon jet.
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Измерение концентрации пероксида водо-
рода производили после добавления в исследу-
емый раствор спиновой ловушки POBN 1  мкл 
14  ммоль/л раствора сульфата железа или ге-
моглобина, полученного из лизированных 
эритроцитов, и 10 мкл этанола. Измерения 
проводили на ЭПР-спектрометре сразу после 
приготовления экспериментальной смеси.

Полученная концентрация пероксида водо-
рода подтверждалась при помощи раствора FOX 
(250 ммоль/л H2SO4, 1 ммоль/д ксиленола оран-
жевого, 1 ммоль/л соли Мора, 0.5 моль/л сорби-
тола) [25]. Через 10 мин после добавления FOX 
измеряли оптическую плотность раствора при 
длине волны 562 нм, пропорциональная концен-
трации пероксида водорода.

Измерение концентраций нитрит-ионов, ни-
трат-ионов, окислительно-восстановительного 
потенциала (ОВП) и pH осуществляли при по-
мощи ион-чувствительных электродов.

Для обнаружения оксида азота (NO) исполь-
зовали раствор гемоглобина, полученный из 
лизированных эритроцитов. Образующиеся ни-
трозильные комплексы гемоглобина измеряли 
методом электронно-парамагнитного резонанса 
(ЭПР).

ЭПР при температуре 77К. Условия регистра-
ции сигналов ЭПР нитрозильных комплексов 
гемоглобина были следующими: напряженность 
магнитного поля – 3365 Гс, диапазон сканиро-
вания – 100 Гс, мощность – 10 мВт, амплитуда 
модуляции – 1 Гс, время записи – 1 мин.

РЕЗУЛЬТАТЫ

Для обнаружения пероксида водорода, об-
разующегося при воздействии холодной плаз-
мы на водные растворы, был применен метод 
спиновых ловушек с использованием спино-
вой ловушки POBN). На рис. 2, А представлен 
сигнал ЭПР спиновых аддуктов гидроксильных 
радикалов, образующихся при взаимодействии 
гидроксильных радикалов со спиновой ловуш-
кой POBN. Можно видеть, что взаимодействие 
гидроксильных радикалов со спиновой ловуш-
кой дает относительно небольшой сигнал ЭПР, 
который можно идентифицировать как сигнал 
спиновых аддуктов гидроксильных радикалов. 
Обычно небольшая интенсивность сигналов 
ЭПР спиновых аддуктов гидроксильных радика-
лов объясняется невысокой стабильностью этих 
спиновых аддуктов. 

Стабильность (и таким образом интенсив-
ность сигнала ЭПР) спиновых аддуктов можно 
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Рис. 2. Сигнал POBN, полученный при разложении пероксида водорода с образованием ОН-радикалов при его взаи-
модействии с двухвалентным железом в отсутствие этанола (А) и в его присутствии (Б).
Fig. 2. POBN signal obtained from the decomposition of hydrogen peroxide to form OH-radicals upon its interaction with diva-
lent iron in the absence of ethanol (A) and in its presence (B).
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увеличить, добавив в систему этанол и заменив 
гидроксильные радикалы на гидроксиэтильные 
радикалы. В этом случае образующиеся в реак-
ции Фентона гидроксильные радикалы будут 
взаимодействовать с этанолом и образовывать 
гидроксиэтильные радикалы, а гидроксиэтиль-
ные радикалы в свою очередь будут взаимо-
действовать с POBN, давая спиновые аддукты 
гидроксиэтильных радикалов (5–6). Стабиль-
ность спиновых аддуктов гидроксиэтильных 
радикалов существенно выше, в результате 
чего интенсивность сигнала ЭПР этих аддук-
тов тоже увеличится. На рис. 2, Б представлены 
сигналы ЭПР спиновых аддуктов гидроксиэ-
тильных радикалов, которые образуются в ре-
акции Фентона при добавлении этанола. Мож-
но видеть, что отношение сигнала к шуму для 
таких сигналов гораздо выше, что позволяет 
обнаруживать существенно более низкие кон-
центрации пероксида водорода. В дальнейшем 
для обнаружения гидроксильных радикалов 
мы использовали экспериментальный подход, 
основанный на замене гидроксильных радика-
лов на гидроксиэтильные в системе реактива  
Фентона

	 OH● + C2H5-OH → C2H5-O● + H2O,� (5)

	 C2H5-O● + POBN → C2H5-O●-POBN.� (6)

Для количественной оценки концентрации 
пероксида водорода была построена калибро-
вочная кривая. Для получения калибровочной 
кривой были измерены интенсивности сигнала 
спиновых аддуктов гидроксиэтильных радика-
лов (рис. 3).

На следующем этапе была измерена концен-
трация пероксида водорода в дистиллированной 
воде подвергшейся действию холодной плазмы 
(рис. 4). Можно видеть, что интенсивность сиг-
нала ЭПР спиновых аддуктов гидроксиэтиль-
ных радикалов растет пропорционально времени 
экспозиции раствора с холодной плазмой. На 
панели 3, Б приведена зависимость интенсивно-
сти сигнала ЭПР гидроксиэтильных радикалов 
от времени экспозиции раствора. Концентра-
ция пероксида водорода в растворе достигала  
900 мкмоль/л при времени экспозиции 7.5 мин. 
Уменьшение амплитуды сигнала в присутствии 
каталазы подтверждает концентрацию образую-
щегося пероксида водорода (рис. 5).

Поскольку одной из целей настоящего иссле-
дования было выяснение возможности приме-

нения холодной плазмы в биологических систе-
мах, в следующей серии экспериментов вместо 
ионов двухвалентного железа мы использовали 
раствор гемоглобина в физиологическом рас-
творе. 

На рис. 6 приведены сигналы ЭПР спино-
вых аддуктов гидроксиэтильных радикалов 
в 0.9%- ном растворе NaCl c добавлением ге-
моглобина. На рис. 7 показана наработка пе-
роксида водорода в 0.9%-ном растворе NaCl под 
действием прямого пьезоразряда.

Аналогичным образом была измерена кон-
центрация пероксида водорода, генерируемого 
плазмой в протоке аргона в атмосфере воздуха 
и аргона. Можно видеть (рис. 8), что обработ-
ка растворов холодной плазмой в атмосфере 
аргона приводит к снижению образования пе-
роксида водорода примерно в 1.5–2 раза, чем 
в атмосфере воздуха. Вследствие вытеснения 
воздуха аргоном на графике наблюдается насы-
щение концентрации пероксида со временем, 
тогда как при использовании прямого пьезо-
разряда зависимость концентрации от времени  
линейна.

На следующем этапе исследований представ-
ляло интерес изучить возможность образования 
оксида азота под действием холодной плазмы. Для 
обнаружения оксида азота использовали лизат 
эритроцитов, содержащий гемоглобин. Хорошо 
известно, что гемоглобин легко взаимодейству-
ет с оксидом азота и образует соответствующие 
нитрозильные комплексы. Сигнал ЭПР таких  
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Рис. 3. Калибровочная кривая для определения кон-
центрации пероксида водорода в растворе по ампли-
туде сигнала ЭПР спиновых аддуктов гидроксиэтиль-
ных радикалов.
Fig. 3. Calibration curve for determining the concentration 
of hydrogen peroxide in solution from the amplitude of the 
EPR signal of the spin adducts of hydroxyethyl radicals.
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комплексов представлен на рис. 9. Для полу-
чения нитрозильных комплексов гемоглобина 
была использована модельная система, содержа-
щая кроме гемоглобина нитрит в 0.9%-ном рас-
творе NaCl и аскорбиновую кислоту. 

Такой же сигнал, но гораздо меньшей интен-
сивности, соответствующий нитрозильным ком-
плексам гемоглобина, был получен от раствора 
гемоглобина, обработанного прямым пьезораз-
рядом в атмосфере (рис. 10).

Обработка 0.9%-ного раствора NaCl аргоно-
вой плазмой не давала наработку NO. 

При помощи электродов были измерены 
окислительно-восстановительный потенци-
ал, рН, концентрации нитрит-ионов и нитрат- 
ионов 0.9%-ного раствора NaCl, обработанного 
прямым и аргоновым пьезоразрядами в воздухе 
(рис. 11).

Видно, что при вытеснении воздушного азота 
аргоном соединения азота под действием холод-
ной плазмы почти не образуются. рН и ОВП при 
использовании пьезоразряда в протоке аргона 
также изменяются гораздо меньше, чем под дей-
ствием прямого пьезоразряда в атмосфере. Это 
говорит о меньшей интенсивности окислитель-
ных реакций, происходящих в растворе.
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Рис. 4. Сигналы спиновых аддуктов гидроксиэтильных радикалов в воде, обработанной прямым пьезоразрядом в ат-
мосфере в течение разных интервалов времени (А) и зависимость концентрации пероксида водорода в воде от време-
ни экспозиции с прямым пьезоразрядом (Б).
Fig. 4. Signals of spin adducts of hydroxyethyl radicals in water treated by direct piezoelectric discharge in atmosphere for differ-
ent time intervals (A) and dependence of hydrogen peroxide concentration in water on exposure time with direct piezoelectric 
discharge (B).
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Рис. 5. Зависимость амплитуды сигнала POBN от 
активности каталазы в воде, обработанной прямым 
пьезоразрядом в атмосфере.
Fig. 5. Dependence of POBN signal amplitude on catalase 
activity in water treated by direct atmospheric piezoelectric 
discharge.
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Рис. 6. Сигналы POBN в растворе Н2О2 (А) и 0.9%-ном растворе NaCl, обработанном прямым пьезоразрядом в атмо-
сфере в течение 7.5 мин (Б), полученные после добавления гемоглобина и этанола.
Fig. 6. POBN signals in H2O2 solution (A) and 0.9% NaCl solution treated by direct piezoelectric discharge in atmosphere for 
7.5 min (B) obtained after addition of hemoglobin and ethanol.
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Рис. 7. Зависимость концентрации пероксида водо-
рода в 0.9%-ном растворе NaCl, обработанном пря-
мым пьезоразрядом, от времени обработки.
Fig. 7. Dependence of hydrogen peroxide concentration 
in 0.9% NaCl solution treated by direct piezoelectric dis-
charge on treatment time.
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Рис. 8. Образование пероксида водорода в 0.9%-ном 
растворе NaCl под действием аргонового пьезоразря-
да в воздухе и атмосфере аргона.
Fig. 8. Hydrogen peroxide formation in 0.9% NaCl solu-
tion under the action of argon piezo discharge in air and 
argon atmosphere.
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Рис. 9. Сигналы ЭПР нитрозильных комплексов гемоглобина, полученные при взаимодействии гемоглобина с нитри-
том натрия и аскорбиновой кислотой.
Fig. 9. EPR signals of nitrosyl complexes of hemoglobin obtained by interaction of hemoglobin with sodium nitrite and ascorbic 
acid.
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Рис. 10. Сигналы нитрозильных комплексов гемоглобина (А) и зависимость концентрации NO от времени обработки 
(Б) в 0.9%-ном растворе NaCl, полученные при обработке раствора гемоглобина прямым пьезоразрядом в атмосфере. 
Время обработки варьировало от 2.5 до 20 мин.
Fig. 10. Signals of hemoglobin nitrosyl complexes (A) and dependence of NO concentration on treatment time (B) in 0.9% NaCl 
solution obtained when hemoglobin solution was treated with direct atmospheric piezor discharge. The treatment time varied 
from 2.5 to 20 minutes.
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ОБСУЖДЕНИЕ

Полученные нами экспериментальные ре-
зультаты показывают, что вытеснение воздуха 
аргоном снижает накопление АФКА в растворе, 
обрабатываемом холодной плазмой. Продукты 
азота не образуются в аргоновой струе, а кон-
центрация пероксида водорода уменьшается по 
сравнению с генерацией прямым пьезоразрядом 
на 30 ± 5% при времени обработки до 5 мин. При 
этом прямой пьезоразряд демонстрирует увели-

чение продукции пероксида водорода при обра-
ботке более 5 мин, а для аргонового разряда на 
этом времени наблюдается максимум наработки. 
Возможно, преобладают пути образования пе-
роксида водорода непосредственно через реак-
цию воды с электронами (7–8), а не с кислород-
ными радикалами [26].

	 H2O + e– → OH● + H● + e–,� (7)

	 OH● + OH● → H2O2.� (8)
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Рис. 11. Зависимость концентрации нитрит-ионов (А), нитрат-ионов (Б), pH (В) и окислительно-восстановительного 
потенциала (Г) 0.9%-ного раствора NaCl от времени обработки их холодной плазмой.
Fig. 11. Dependence of nitrite ion concentration (A), nitrate ion concentration (B), pH (C) and redox potential (D) of 0.9% NaCl 
solution on the time of their cold plasma treatment.
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Таким образом, использование в медици-
не плазмы в потоке аргона может приводить 
к увеличению времени обработки и нагрузки на 
прибор для достижения требуемого эффекта. 
В случаях, когда не требуется прямого контакта 
плазмы с пациентом, рекомендуется использо-
вать физиологические растворы, обработанные 
прямым пьезоразрядом, так как он показал более 
высокую продуктивность в генерации АФКА. 
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Formation of Active Forms of Oxygen and Nitrogen in Water under the Influence  
of Cold Plasma

T. I. Pavlik1, 2, *, N. G. Gusein-zade1, V. V. Gudkova1, 3, A. N. Osipov2
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3Рeoples Friendship University of Russia (RUDN University), Moscow, Russia

 *E-mail: office@gpi.ru

Cold plasma and solutions treated with it are widely used in various fields of medicine. Biomedical effects 
of cold plasma are primarily associated with the generation of active forms of oxygen and nitrogen. The CAPCO 
cold plasma source (GPI RAS) generates hydrogen peroxide, nitrogen oxide (II), nitrite ions and nitrate ions 
in an aqueous solution. Hydrogen peroxide is formed through the Fenton reaction – two-electron reduction 
of the oxygen molecule. The use of a plasma discharge in an argon flow reduces the generation of hydrogen 
peroxide compared to atmospheric plasma and eliminates the formation of nitrogen derivatives. The amount 
of oxidation reaction products initiated by argon plasma is 30% less than that of atmospheric plasma. It is 
recommended to use direct piezo discharge in air to produce activated solutions used in medicine. 

Keywords: cold plasma, active forms of oxygen and nitrogen, electron paramagnetic resonance, Fenton reaction, argon 
piezoelectric discharge
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